The Journal of Fuzzy Mathematics Vol. 26, No. 4, 2018 Los Angeles

α -B -Finitisticness of Fuzzy Bitopological Spaces

Shakeel Ahmed

Govt.Degree College, Thanna Mandi

Rohini Jamwal

Department of Mathematics, University of Jammu E-mail: rohinijamwal121@gmail.com

Abstract:

In this paper, we have introduced the concept of α -B-finitistic fuzzy bitopological spaces and studied some of their basic properties.

Keywords:

Covering Dimension, Finitisticness, Fuzzy Bitopological Space, Open Refinement.

1. Introduction and preliminaries

The order of a family $\{U_{\lambda} : \lambda \in \Delta\}$ of subsets, not all empty, of some set X is the largest integer n for which there exists a subsets M of Δ with n+1 elements such that $\bigcap_{\lambda \in M} U_{\lambda}$ is non-empty, or is ∞ if there is no such largest integer.

Let $\Delta \neq \emptyset$ and $\mathcal{A} = \{A_{\lambda} : \lambda \in \Delta\}$ be a family of fuzzy subsets of a non-empty set X. Then order of \mathcal{A} is defined as under:

Case I. When $A_{\lambda} \neq \underline{0}$ for atleast one value of λ in Δ . Then the order of \mathcal{A} is the largest non-negative integer n for which there exists a subset M of Δ having n+1 elements such that $\bigwedge_{\lambda \in M} A_{\lambda} \neq \underline{0}$ or is ∞ if there is no such largest integer n.

Case II. When $A_{\lambda} = \underline{0}$ for all $\lambda \in \Delta$. Then the order of \mathcal{A} is -1.

The concept of bitopological space was introduced by Kelly [6]. A bitopological space is a triplet (X, τ_1, τ_2) where X is a non-empty set and τ_1, τ_2 are two topologies on X. Let (X, τ_1, τ_2) be a bitopological space. A subfamily $\{U_{\lambda} : \lambda \in \Lambda\}$ of τ_i is said to be τ_i open cover of (X, τ_1, τ_2) where i = 1, 2 if $\bigcup_{\lambda \in \Lambda} U_{\lambda} = X$. A bitopological space

Received July, 2017

 (X, τ_1, τ_2) is said to be *B*-compact if each τ_i open cover of *X* has τ_j finite subcover where i, j = 1, 2 and $i \neq j$. Let (X, τ_1, τ_2) and (Y, τ_3, τ_4) be two bitopological spaces. A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \tau_3, \tau_4)$ is said to be *B*-continuous if inverse image of every τ_3 open subset of *Y* is τ_2 open subset of *X* and inverse image of every τ_4 open subset of *Y* is τ_1 open subset of *X*. A function $f:(X, \tau_1, \tau_2) \rightarrow (T, \tau_3, \tau_4)$ is said to be *B*-homeomorphism if both *f* and f^{-1} are *B*-continuous. A general bitopological space (X, τ_1, τ_2) is said to be *B*-finitistic if each τ_i open cover of *X* has τ_j finite order open refinement where i, j = 1, 2 and $i \neq j$.

Any function $A: X \to I$ where I = [0,1] is called a fuzzy subset of X. The set of all fuzzy subsets of X is denoted by I^X . A subfamily $\delta \subset I^X$ is said to be a fuzzy topology on X if

- (i) $\underline{0}, \underline{1} \in \delta$,
- (ii) $\{U_{\lambda} : \lambda \in \Lambda\} \subset \delta \Rightarrow \bigvee_{\lambda \in \Delta} U_{\lambda} \in \delta$,
- (iii) $U, V \in \delta \Rightarrow U \land V \in \delta$.

The pair (X, δ) is called fuzzy topological space. For every $a \in I$, \underline{a} is called "a" valued constant function from X to I. A fuzzy subset A is called a crisp subset if there exists an ordinary subset U of X such that $A = \chi_U$, where $\chi_U : X \to \{0,1\} \subset I$ is the characteristic function of U. The family of all the crisp subsets contained in δ is denoted by $crs(\delta)$ and $[\delta]$ is defined as $[\delta] = \{U \subset X : \chi_U \in crs(\delta)\}$. For a fuzzy topological space (X, δ) , $crs(\delta)$ is a fuzzy topology on X and $[\delta]$ is general topology on X. A fuzzy bitopological space is a triplet (X, τ_1, τ_2) , where X is a non-empty set and δ_1 , δ_2 are two fuzzy topologies on X. Let (X, δ_1, δ_2) be a fuzzy bitopological space. A subfamily $\{U_{\lambda} : \lambda \in \Lambda\}$ of δ_i is said to be δ_i open cover of (X, δ_1, δ_2) where i = 1, 2 if $\bigvee_{\lambda \in \Lambda} U_{\lambda} = \underline{1}$. Let (X, δ) be a fuzzy topological space. For every $\alpha \in [0, 1)$, a subfamily \mathcal{U} of δ is said to be an α -open cover of (X, δ) if for every $x \in X$, there exists some $U \in \mathcal{U}$ such that $U(x) > \alpha$ (page no.187 of [7]). An α -open cover is also called α -shading.

2. α -B -finitistic fuzzy bitopological spaces

Definition 2.1. A fuzzy bitopological space (X, δ_1, δ_2) is said to be α -*B*-finitistic if each $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) has δ_j finite order α -open refinement where $i \neq j$ and i, j = 1, 2.

Theorem 2.2. A general bitopological space (X, τ_1, τ_2) is *B*-finitistic if and only if $(X, \chi(\tau_1), \chi(\tau_2))$ is α -*B*-finitistic.

Proof. Here (X, τ_1, τ_2) is a general bitopological space and $(X, \chi(\tau_1), \chi(\tau_2))$ is a fuzzy bitopological space where $\chi(\tau_1) = \{\chi_V : V \in \tau_1\}$ and $\chi(\tau_2) = \{\chi_V : V \in \tau_2\}$. Suppose (X, τ_1, τ_2) is B-finitistic. We have to show that $(X, \chi(\tau_1), \chi(\tau_2))$ is α -Bfinitistic. Let $\mathcal{U} = \{\chi_{U_{\lambda}} : \lambda \in \Delta\}$ be any $\chi(\tau_i) \alpha$ -open cover of $(X, \chi(\tau_1), \chi(\tau_2))$. We claim that $\mathcal{V} = \{ U_{\lambda} : \chi_{U_{\lambda}} \in \mathcal{U} \}$ is a τ_i open cover of (X, τ_1, τ_2) . Let $x \in X$. Since \mathcal{U} is $\chi(\tau_i)\alpha$ -open cover of $(X, \chi(\tau_1), \chi(\tau_2))$, there exists some $\chi_{U_i} \in \mathcal{U}$ such that $\chi_{U_{\lambda}}(x) > \alpha$. But $\chi_{U_{\lambda}}(x) > \alpha \Rightarrow \chi_{U_{\lambda}}(x) > 0 \Rightarrow \chi_{U_{\lambda}}(x) = 1 \Rightarrow x \in U_{\lambda}$. This means that $X = \bigcup_{\lambda \in \Delta} U_{\lambda}$. This shows that \mathcal{V} is τ_i open cover of (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is *B*-finitistic, therefore \mathcal{V} has a τ_j finite order open refinement, say $\mathcal{W} = \{W_t : t \in \Delta_1\}$. We shall show that $S = \{\chi_{W_t} : W_t \in W\}$ is a $\chi(\tau_j)$ finite order α -open refinement of \mathcal{U} . We first show that \mathcal{S} is $\chi(\tau_i)\alpha$ -open cover. Since \mathcal{W} is τ_i open cover of X, $\bigcup_{t\in\Delta_1} W_t = X \quad . \qquad \text{Now}, \quad \bigcup_{t\in\Delta_1} W_t = X \Rightarrow \chi_{\bigcup_{t\in\Delta_1} W_X} = \chi_X = \underline{1} \Rightarrow \bigvee_{t\in\Delta_1} \chi_{W_t} = \underline{1} \Rightarrow$ $\bigvee_{t \in \Delta_1} \chi_{W_t}(x) = \underline{1}(x) = 1 > \alpha$, $\forall x \in X$. This means that for all $x \in X$, there exists $\chi_{W_t} \in \chi(\tau_j)$ such that $\chi_{W_t}(x) > \alpha$. Therefore, S is $\chi(\tau_j)\alpha$ -open cover of X. Since W is τ_i refinement of V, for every $W_t \in W$, there exists $U_\lambda \in V$ such that $W_t \in U_\lambda$. Clearly, $\chi_{W_t} \leq \chi_{U_\lambda}$. Thus for each $\chi_{W_t} \in S$, there exists $\chi_{U_\lambda} \in U$ such that $\chi_{W_i} \leq \chi_{U_i}$. Hence S is $\chi(\tau_j)\alpha$ -open refinement of \mathcal{U} . Finally, suppose order of $\mathcal{W} = n \ (\because \mathcal{U} \text{ is of finite order}). \quad \text{Then } \bigcap_{i=1}^{n+2} W_{t_i} = \emptyset \Rightarrow \chi_{\bigcap_{i=1}^{n+2} W_{t_i}} = \underline{0} \Rightarrow \bigwedge_{i=1}^{n+2} \chi_{W_{t_i}} = \underline{0} \ .$ This shows that S is also of finite order. Thus S is $\chi(\tau_i)$ finite order α -open refinement of \mathcal{U} . Hence $(X, \chi(\tau_1), \chi(\tau_2))$ is α -B-finitistic.

Conversely, let $(X, \chi(\tau_1), \chi(\tau_2))$ be α -*B*-finitistic. We have to show that (X, τ_1, τ_2) is *B*-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Delta\}$ be any τ_i open cover of (X, τ_1, τ_2) . We show that $\mathcal{V} = \{\chi_{U_{\lambda}} : U_{\lambda} \in \mathcal{U}\}$ is $\chi(\tau_i)\alpha$ -open cover of $(X, \chi(\tau_1), \chi(\tau_2))$. For this, let $x \in X$. Since $\mathcal{U} = \{U_{\lambda} : \lambda \in \Delta\}$ is any τ_i open cover of (X, τ_1, τ_2) , there exists some $U_{\beta} \in \mathcal{U}$ such that $x \in U_{\beta}$. Then $\chi_{U_{\beta}}(x) = 1 > \alpha$. Hence $\mathcal{V} = \{\chi_{U_{\lambda}} : U_{\lambda} \in \mathcal{U}\}$ is $\chi(\tau_i)\alpha$ -open cover of $(X, \chi(\tau_1), \chi(\tau_2))$. Since $(X, \chi(\tau_1), \chi(\tau_2))$ is α -*B*-finitistic, therefore \mathcal{V} has $\chi(\tau_j)$ finite order α -open refinement, say $\mathcal{W} = \{\chi_{W_i} : t \in \Delta\}$. Then clearly $\mathcal{S} = \{W_t : \chi_{W_t} \in \mathcal{W}\}$ is τ_j finite order open refinement of \mathcal{U} . Hence (X, τ_1, τ_2) is *B*-finitistic. **Theorem 2.3.** Let (X, δ_1, δ_2) be a fuzzy bitopological space. Then $(X, [\delta_1], [\delta_2])$ is *B*-finitistic if and only if $(X, crs \delta_1, crs \delta_2)$ is α -*B*-finitistic.

Proof. We know that $crs(\delta_i)$ (i=1,2) is a fuzzy topology on X and $[\delta_i]$ is a general topology on X. Thus the result follows by Theorem 2.2.

Theorem 2.4. A general bitopological space (X, τ_1, τ_2) is *B*-finitistic if and only if (X, δ_1, δ_2) is α -*B*-finitistic, where $\delta_1 = (\underline{U} : U \in \tau_1)$ and $\delta_2 = (\underline{U} : U \in \tau_2)$. Here \underline{U} denotes the constant *U* function from *X* to *I*.

Proof. Suppose (X, τ_1, τ_2) is *B*-finitistic. We shall show that (X, δ_1, δ_2) is α -*B*-finitistic. For this, let $\mathcal{U} = \{\underline{U}_{\lambda} : \lambda \in \Delta\}$ be a $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . We first show that $\mathcal{V} = \{U_{\lambda} : U_{\lambda} \in \mathcal{U}\}$ is τ_i open cover of (X, τ_1, τ_2) .

Let $x \in X$. Since \mathcal{U} is a $\delta_i \alpha$ -open cover of X, there exists some $\underline{U_{\lambda}} \in \mathcal{U}$ such that $\underline{U_{\lambda}}(x) > \alpha$. Now, $\underline{U_{\lambda}}(x) > \alpha \Rightarrow \bigvee_{\lambda \in \Delta} \underline{U_{\lambda}} = 1 = \underline{1}(x) \Rightarrow \bigcup_{\lambda \in \Delta} U_{\lambda} = X$.

This shows that \mathcal{V} is τ_i open cover of (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is *B*-finitistic, therefore \mathcal{V} has τ_j finite order open refinement, say $\mathcal{W} = \{W_t : t \in \Lambda\}$. We shall show that $\mathcal{S} = \{W_t : W_t \in \mathcal{W}\}$ is a δ_j finite order α -open refinement of \mathcal{U} .

Let $x \in X$. Then $\bigcup_{t \in \Lambda} W_t = X \Rightarrow \bigvee_{t \in \Lambda} \underline{W_t}(x) = \underline{1}(x) = 1$. This means that there exists some $\underline{W_t} \in S$ such that $W_t(x) > \alpha$. Also, let $\underline{W_t} \in S$. Then $W_t \in \mathcal{W}$.

Since \mathcal{W} is a τ_j open refinement of \mathcal{V} , there exists some $U_{\lambda} \in \mathcal{V}$ such that $W_t \subset U_{\lambda}$. But $W_t \subset U_{\lambda}$ implies $\underline{W_t} \leq \underline{U_{\lambda}}$. This shows that \mathcal{S} is $\delta_j \alpha$ -open refinement of \mathcal{U} .

Finally, we show that S is of finite order.

Let order of $\mathcal{W} = n$. Let S_1 be any subfamily of S having n+2 members. Then $\left(\bigwedge_{\underline{W}_t \in S_1} W_t \right)(x) = \bigwedge_{\underline{W}_t \in S_1} W_t(x) = \bigcap_{W_t \in S_1} W_t = \emptyset = 0 = \underline{0}(x)$ implies $\bigwedge_{\underline{W}_t \in S_1} W_t = \underline{0}$. This shows that order of S is not exceeding n. Hence (X, δ_1, δ_2) is α -B-finitistic.

Conversely, suppose (X, δ_1, δ_2) is α -*B*-finiitistic. We have to show that (X, τ_1, τ_2) is *B*-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Delta\}$ be τ_i open cover of (X, τ_1, τ_2) . We shall show that $\mathcal{V} = \{\underline{U}_{\lambda} : U_{\lambda} \in \mathcal{U}\}$ is δ_i open cover of (X, δ_1, δ_2) . Since \mathcal{U} is τ_i open cover of X, $\bigcup_{\lambda \in \Delta} U_{\lambda} = X = \underline{1}$. Now, $\bigcup_{\lambda \in \Delta} U_{\lambda} = \underline{1} \Rightarrow \bigcup_{\lambda \in \Delta} U_{\lambda}(x) = \underline{1}(x)$, $\forall x \in X \Rightarrow \bigvee_{\lambda \in \Delta} \underline{U}_{\lambda}(x) = 1 > \alpha$, $\forall x \in X$. This means that there exits $\lambda \in \Delta$ such that $\underline{U}_{\lambda}(x) > \alpha$.

Thus \mathcal{V} is $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . Since X is α -B-finitistic, \mathcal{V} has a δ_j finite order α -open refinement, say $\mathcal{V}_1 = \{\underline{V}_t : t \in \Lambda\}$. It can be easily checked that

 $\mathcal{U}_1 = \left\{ V_t : \underline{V}_t \in \mathcal{V}_1 \right\}$ is a τ_j finite order open refinement of \mathcal{U} . Hence (X, τ_1, τ_2) is B-finitistic.

Theorem 2.5. Let (X, δ_1, δ_2) be a α -B-finitistic fuzzy bitopological space and $(Y, \delta_1|_Y, \delta_2|_Y)$ be a B-closed subspace of (X, δ_1, δ_2) . Then $(Y, \delta_1|_Y, \delta_2|_Y)$ is α -B-finitistic.

Proof. Here (X, δ_1, δ_2) is a α -*B*-finitistic fuzzy bitopological space and $(Y, \delta_1|_Y, \delta_2|_Y)$ is *B*-closed subspace of (X, δ_1, δ_2) . We have to show that $(Y, \delta_1|_Y, \delta_2|_Y)$ is α -*B*-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be any $\delta_i|_Y \alpha$ -open cover of $(Y, \delta_1|_Y, \delta_2|_Y)$. Then each $U_{\lambda} = V_{\lambda}|_Y$, for some $V_{\lambda} \in \delta_i$ where i = 1, 2. We show that $\mathcal{V} = \{V_{\lambda} : U_{\lambda} = V_{\lambda}|_Y, \forall U_{\lambda} \in \mathcal{U}\} \cup \{\chi_{Y'}\}$ is $\delta_i \alpha$ -open cover of *X*. Let $x \in X$. Then $x \in Y$ or $x \in Y'$.

Case I. If $x \in Y$, then there exists some $U_{\lambda} \in \mathcal{U}$ such that $U_{\lambda}(x) > \alpha$. Then clearly $V_{\lambda} \in \mathcal{V}$ such that $V_{\lambda}(x) = U_{\lambda}(x) > \alpha$, where $U_{\lambda} = V_{\lambda}|_{Y}$ and $V_{\lambda} \in \{V_{\lambda} : U_{\lambda} = V_{\lambda}|_{Y}, \forall U_{\lambda} \in \mathcal{U}\}$. Thus $V_{\lambda}(x) > \alpha$.

Case II. If $x \in Y'$, then $\chi_{Y'} \in \mathcal{V}$ such that $\chi_{Y'}(x) = 1 > \alpha$.

Hence $\mathcal{V} = \{ V_{\lambda} : U_{\lambda} = V_{\lambda} |_{Y}, \forall U_{\lambda} \in \mathcal{U} \} \cup \{ \chi_{Y'} \}$ is $\delta_{i} \alpha$ -open cover of $(X, \delta_{1}, \delta_{2})$ in both the cases.

Since (X, δ_1, δ_2) is α -B -finitistic, therefore \mathcal{V} has δ_j finite order α -open refinement, say $\mathcal{V}_1 = \{W_\alpha : \alpha \in \Delta\}$. Then clearly $\mathcal{U}_1 = \{W_\alpha |_Y : W_\alpha \in \mathcal{V}_1\}$ is $\delta_j |_Y$ finite order α -open refinement of \mathcal{U} . Hence $(Y, \delta_1 |_Y, \delta_2 |_Y)$ is α -B -finitistic.

Theorem 2.6. Let (X, τ_1, τ_2) be a general bitopological space and $Y \subset X$. Then $(Y, \tau_1|_Y, \tau_2|_Y)$ is *B*-finitistic if and only if $(Y, \chi(\tau_1)|_Y, \chi(\tau_2)|_Y)$ is α -*B*-finitistic.

Proof. We know that $\chi(\tau_i)|_Y = \{\chi_U : U \in \tau_i|_Y\}$. Thus by Theorem 2.2 $(Y, \tau_1|_Y, \tau_2|_Y)$ is *B*-finitistic if and only if $(Y, \chi(\tau_1)|_Y, \chi(\tau_2)|_Y)$ is α -*B*-finitistic.

Remark 2.7. An arbitrary subspace of α -*B*-finitistic fuzzy bitopological space need not be α -*B*-finitistic.

We know that in general topology an arbitrary subspace of a finitistic space need not be finitistic [4]. Let (X, τ_1, τ_2) be a *B*-finitistic general bitopological space. Let $(Y, \tau_1|_Y, \tau_2|_Y)$ be a subspace of (X, τ_1, τ_2) which is not *B*-finitistic. Since (X, τ_1, τ_2) is *B*-finitistic, by Theorem 2.2 $(X, \chi(\tau_1)|_Y, \chi(\tau_2)|_Y)$ is α -*B*-finitistic. Also, by Theorem 2.2, $(Y, \tau_1|_Y, \tau_2|_Y)$ is not *B*-finitistic implies $(Y, \chi(\tau_1)|_Y, \chi(\tau_2)|_Y)$ is not α -*B*-finitistic.

Example 2.8. Let X be a non-empty set and $a \in [0,1)$. Let $\delta_1 = \delta_2 = \delta_a = \{A \in I^X : A \leq \underline{a}\} \cup \{\underline{1}\}$. Then (X, δ_1, δ_2) is α -B-finitistic fuzzy bitopological space. For, clearly (X, δ_1, δ_2) is fuzzy bitopological space. Let \mathcal{U} be any $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . Then clearly, $\underline{1} \in \mathcal{U}$ (because no subfamily of δ_i can be a $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) unless $\underline{1} \in \mathcal{U}$). Now clearly, $\mathcal{V} = \{\underline{0}, \underline{1}\}$ is a zero order $\delta_j \alpha$ -open refinement of \mathcal{U} . Hence (X, δ_1, δ_2) is α -B-finitistic.

Theorem 2.9. Every α -B -compact fuzzy bitopological space is α -B -finitistic.

Proof. Let (X, δ_1, δ_2) be a α -*B*-compact fuzzy bitopological space. We have to show that it is α -*B*-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be any $\delta_i \alpha$ -open cover of X. Since (X, δ_1, δ_2) is α -*B*-compact, therefore \mathcal{U} has a δ_j finite α -subcover say $\{U_1, U_2, U_3, \dots, U_n\}$. Then $\mathcal{V} = \{\underline{0}, U_1, U_2, U_3, \dots, U_n\}$ is clearly δ_j finite order α -open refinement of \mathcal{U} . Hence (X, δ_1, δ_2) is α -*B*-finitistic.

Definition 2.10. A fuzzy bitopolgoical space (X, δ_1, δ_2) is said to be α -B - paracompact if each $\delta_i \alpha$ -open cover of X has a δ_i locally finite α -open refinement.

Theorem 2.11. Every finite dimensional α -B -paracompact fuzzy bitopological space is α -B -finitistic.

Proof. Let (X, δ_1, δ_2) be a α -*B*-paracompact fuzzy bitopological space. We have to show that it is α -*B*-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be any $\delta_i \alpha$ -open cover of *X*. Since (X, δ_1, δ_2) is α -*B*-paracompact, therefore \mathcal{U} has a δ_j locally finite α -subcover, say \mathcal{V} . Also since dim $X < \infty$ and \mathcal{V} is locally finite, it follows that \mathcal{V} and hence \mathcal{U} has a δ_j finite order α -open refinement. Hence (X, δ_1, δ_2) is α -*B*-finitistic.

Remark 2.12. Converse of above Theorem 2.9 is not true. Consider the following example:

Example. Let X be an infinite set. Let $\delta_1 = \{\chi_U : U \subset X\}$ and $\delta_2 = \delta_1$. Then clearly, (X, δ_1, δ_2) is α -B -finitistic space. This is because $\mathcal{V} = \{\chi_{\{x\}} : x \in X\}$ is clearly δ_j finite order α -open refinement of every $\delta_i \alpha$ -open cover of X. But (X, δ_1, δ_2) is not α -B -compact because $\mathcal{V} = \{\chi_{\{x\}} : x \in X\}$ is a $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) which has no δ_i finite α -subcover.

Theorem 2.13. If (X, δ_1, δ_2) is a α -B-finitistic fuzzy bitopological space, then both (X, δ_1) and (X, δ_2) are α -finitistic.

Proof. Suppose (X, δ_1, δ_2) is an α -*B*-finitistic fuzzy bitopological space. We have to show that both (X, δ_1) and (X, δ_2) are α -finitistic spaces. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be any α -open cover of (X, δ_1) . Then clearly $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ is $\delta_1 \alpha$ -open cover of (X, δ_1, δ_2) . Since (X, δ_1, δ_2) is α -*B*-finitistic fuzzy bitopological space, therefore \mathcal{U} has a δ_2 finite order α -open refinement, say \mathcal{V} . Again since \mathcal{V} is $\delta_2 \alpha$ -open cover of (X, δ_1, δ_2) and (X, δ_1, δ_2) is α -*B*-finitistic, therefore \mathcal{V} has a δ_1 finite order α -open refinement, say \mathcal{U}_1 . Then clearly \mathcal{U}_1 is a finite order α -open refinement of \mathcal{U} . Hence (X, δ_1) is α -finitistic. Similarly we can show that (X, δ_2) is α -finitistic.

Remark 2.14. Converse of above theorem is not true. See the following example:

Example. Let $X = \{a, b\}$ be a set having two elements. Let $\delta_1 = \{\underline{0}, \underline{1}\}$ and $\delta_2 = \{\underline{0}, \chi_{\{a\}}, \chi_{\{b\}}, \underline{1}\}$. Then clearly both (X, δ_1) and (X, δ_2) are α -finitistic fuzzy topological spaces. But (X, δ_1, δ_2) is not α -B-finitistic because $\{\chi_{\{a\}}, \chi_{\{b\}}\}$ is $\delta_2 \alpha$ -open cover of (X, δ_1, δ_2) which has no δ_1 finite order α -open refinement.

Definition 2.15. A fuzzy bitopological space (X, δ_1, δ_2) is said to be α -finitistic if each $\delta_i \alpha$ -open cover of X has a δ_i finite order α -open refinement.

Theorem 2.16. Let (X, δ_1, δ_2) be a fuzzy bitopological space, where X is a finite set. Then (X, δ_1, δ_2) is α -finitistic.

Proof. Let (X, δ_1, δ_2) be any fuzzy bitopological space. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Delta\}$ be a $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . Since X is finite, we can write, $X = \{n_1, n_2, \dots, n_k\}$. Since \mathcal{U} is $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) , there exists some $U_{\lambda_i} \in \mathcal{U}$ such that $U_{\lambda_i}(n_i) > \alpha$, $\forall i = 1, 2, \dots, k$. Then clearly, $\mathcal{V} = \{\underline{0}, U_{\lambda_1}, U_{\lambda_2}, \dots, U_{\lambda_n}\}$ is δ_i finite order α -open refinement of \mathcal{U} . Hence (X, δ_1, δ_2) is α -finitistic.

Remark 2.17. If X is finite, then (X, δ_1, δ_2) need not be α -B-finitistic.

Example. Let $X = \{a, b\}$. Let $\delta_1 = \{\underline{0}, \underline{1}\}$ and $\delta_2 = \{\underline{0}, \chi_{\{a\}}, \chi_{\{b\}}, \underline{1}\}$. Then (X, δ_1, δ_2) is not α -*B*-finitisitc. This is because $\{\chi_{\{a\}}, \chi_{\{b\}}\}$ is $\delta_2 \alpha$ -open cover of (X, δ_1, δ_2) which has no δ_1 finite order α -open refinement.

Remark 2.18. An α -finitistic fuzzy bitopological space need not be α -*B* -finitistic. Consider the following example:

Example. Let $X = \{a, b\}$ be a set having two elements. Let $\delta_1 = \{\underline{0}, \underline{1}\}$ and $\delta_2 = \{\underline{0}, \chi_{\{a\}}, \chi_{\{b\}}, \underline{1}\}$. Then clearly (X, δ_1, δ_2) is a fuzzy bitopological space. It is clear that every δ_1 (or δ_2) open cover of (X, δ_1, δ_2) has δ_1 (or δ_2) finite order open refinement. Hence (X, δ_1, δ_2) is α -finitistic. But (X, δ_1, δ_2) is not α -B -finitistic because $\{\chi_{\{a\}}, \chi_{\{b\}}\}$ is $\delta_2 \alpha$ -open cover of (X, δ_1, δ_2) which has no δ_1 finite order α - open refinement.

Remark 2.19. An α -B -finitistic fuzzy bitopological space need not be α -finitistic.

Definition 2.20. A fuzzy bitopological space (X, δ_1, δ_2) is said to be *B*-finitistic if each δ_i open cover of X has a δ_i finite order open refinement.

Remark 2.21. An α -*B*-finitistic fuzzy bitopological space need not be *B*-finitistic. Consider the following example:

Example. Let X be an infinite set. Let $\delta_1 = \{\chi_U : U \subset X\}$ and $\delta_2 = \delta_1$. Then clearly, (X, δ_1, δ_2) is a fuzzy bitopological space. Since $\mathcal{V} = \{\chi_{\{x\}} : x \in X\}$ is δ_i finite order α -open refinement of every $\delta_i \alpha$ -open cover of X, it follows that (X, δ_1, δ_2) is α -B-finitistic space. But (X, δ_1, δ_2) is not B-finitistic because the δ_i open cover $\mathcal{V} = \{\chi_{\{x\}} : x \in X\}$ of (X, δ_1, δ_2) which has no δ_j finite order open refinement.

Theorem 2.22. Let (X, δ_1, δ_2) be an α -B-finitistic fuzzy bitopological space where either of δ_1 or δ_2 is discrete fuzzy topology on X. Then $\delta_1 = \delta_2$.

Proof. Proof is easy and hence is omitted.

Definition 2.23. Let (X, τ_1, τ_2) and (Y, τ_3, τ_4) be two bitopological spaces. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \tau_3, \tau_4)$ is said to be α -B-continuous if inverse image of every $\tau_3 \alpha$ -open subset of Y is $\tau_2 \alpha$ -open subset of X and inverse image of every $\tau_4 \alpha$ -open subset of Y is $\tau_1 \alpha$ -open subset of X.

Definition 2.24. Let (X, τ_1, τ_2) an (Y, τ_3, τ_4) be two bitopological spaces. A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \tau_3, \tau_4)$ is said to be α -*B*-homeomorphism if both f and f^{-1} are α -*B*-continuous.

Remark 2.25. An α -B -continuous image of α -B -finitistic fuzzy bitopological space need not be α -B -finitistic.

Consider the following example:

Example. Let $X = \{a, b\}$ be a set having two elements. Let $\delta_1 = \{\underline{0}, \chi_{\{a\}}, \chi_{\{b\}}, \underline{1}\}$ and $\delta_2 = \{\underline{0}, \underline{1}\}$. Then clearly both δ_1 and δ_2 are fuzzy topologies on X. Then (X, δ_1, δ_2) and (X, δ_1, δ_2) are fuzzy bitopological spaces. Here (X, δ_1, δ_2) is α -Bfinitistic but (X, δ_1, δ_2) is not α -B-finitistic because $\{\chi_{\{a\}}, \chi_{\{b\}}\}$ is $\delta_1 \alpha$ -open cover of X which has no δ_2 finite order α -open refinement. Let $I: X \to X$ be the identity function. Then $I: (X, \delta_1, \delta_2) \to (X, \delta_1, \delta_2)$ is α -B-continuous. It means (X, δ_1, δ_2) is α -B-continuous image of (X, δ_1, δ_2) . Hence (X, δ_1, δ_2) is α -B-finitistic but (X, δ_1, δ_2) is not α -B-finitistic.

Remark 2.26. α -*B*-continuous inverse image of α -*B*-finitistic fuzzy bitopological space need not be α -*B*-finitistic.

See the following example.

Example. Let $X = \{a, b\}$, $\delta_1 = \{\underline{0}, \chi_{\{a\}}, \underline{1}\}$ and $\delta_2 = \{\underline{0}, \chi_{\{a\}}, \chi_{\{b\}}, \underline{1}\}$. Then (X, δ_1, δ_2) is a fuzzy bitopological space. But it is not α -*B*-finitistic. Let $Y = \{x, y\}$, $\delta_3 = \{\underline{0}, \chi_{\{x\}}, \underline{1}\}$ and $\delta_4 = \{\underline{0}, \chi_{\{y\}}, \underline{1}\}$. Then (Y, δ_3, δ_4) is a fuzzy bitopological space and it is α -*B*-finitistic. Define $f: X \to Y$ as f(a) = x and f(b) = y. Then clearly $f: (X, \delta_1, \delta_2) \to (Y, \delta_3, \delta_4)$ is α -*B*-continuous. Here (Y, δ_3, δ_4) is α -*B*-finitistic but (X, δ_1, δ_2) which is α -*B*-continuous inverse image of (Y, δ_3, δ_4) is not α -*B*-finitistic.

Theorem 2.27. α -*B*-Homeomorphic image of α -*B*-finitistic fuzzy bitopological space is α -*B*-finitistic.

Proof. Let $f:(X, \delta_1, \delta_2) \to (Y, \delta_3, \delta_4)$ be an α -B-homeomorphism. Suppose that (X, δ_1, δ_2) is α -B-finitistic fuzzy bitopological space. We have to show that (Y, δ_3, δ_4) is α -B-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be any $\delta_3 \alpha$ -open cover of Y. Since $f:(X, \delta_1, \delta_2) \to (T, \delta_3, \delta_4)$ is α -B-continuous, therefore each $U_{\lambda}f$ is $\delta_2 \alpha$ -open subset of X. We shall show that $\mathcal{V} = \{U_{\lambda}f : U_{\lambda} \in \mathcal{U}\}$ is $\delta_2 \alpha$ -open cover of X. For this let $x \in X$. Then $f(x) \in Y$. Since \mathcal{U} is $\delta_3 \alpha$ -open cover of Y, there exists $U_{\lambda} \in \mathcal{U}$ such that $U_{\lambda}(f(x)) > \alpha$. But $U_{\lambda}(f(x)) > \alpha \Rightarrow (U_{\lambda}f)(x) > \alpha$. This shows that \mathcal{V} is $\delta_2 \alpha$ -open cover of X. Since (X, δ_1, δ_2) is α -B-finitistic fuzzy bitopological space, therefore \mathcal{V} has δ_1 finite order α -open refinement say \mathcal{V}_1 . We now claim that $\mathcal{U}_1 = \{Wf^{-1} : W \in \mathcal{V}_1\}$ is a δ_4 finite order α -open refinement of \mathcal{U} .

Since $f^{-1}: (Y, \delta_3, \delta_4) \to (X, \delta_1, \delta_2)$ is $\alpha \cdot B$ -continuous, therefore, Wf^{-1} is δ_4 fuzzy open subset of (Y, δ_3, δ_4) . Also, let $y \in Y$. Then there exists $x \in X$ such that y = f(x). Since f is bijective, therefore y = f(x) implies $x = f^{-1}(y)$.

Since $x \in X$ and \mathcal{V}_1 is a $\delta_1 \alpha$ -open cover of (X, δ_1, δ_2) , there exists some $W \in \mathcal{V}_1$ such that $W(x) > \alpha$. But $W(x) > \alpha \Rightarrow W(f^{-1}(y)) > \alpha \Rightarrow (Wf^{-1})(y) > \alpha$.

This implies that \mathcal{U}_1 is $\delta_4 \alpha$ -open cover of (Y, δ_3, δ_4) .

We now show that \mathcal{U}_1 refines \mathcal{U} .

Let $Wf^{-1} \in \mathcal{U}_1$. Then $W \in \mathcal{V}_1$. Since \mathcal{V}_1 refines \mathcal{V} , there exists some $U_{\lambda} \in \mathcal{V}$ such that $W \leq U_{\lambda}$. But $W \leq U_{\lambda}$ implies $Wf^{-1} \leq U_{\lambda}f^{-1}$. This implies that \mathcal{U}_1 refines \mathcal{U} . Since \mathcal{U}_1 is of finite order, it is easy to check that order of \mathcal{U}_1 is also finite. This proves that $\mathcal{U}_1 = \left\{ Wf^{-1} : W \in \mathcal{V}_1 \right\}$ is a δ_4 finite order α -open refinement of \mathcal{U} .

Similarly we can show that each $\delta_4 \alpha$ -open cover of Y has a δ_3 finite order α - open refinement. Hence (Y, δ_3, δ_4) is α -B-finitistic.

Definition 2.28. A fuzzy topological space (X, δ) is said to be weakly induced if for all $U \in \delta$ and $a \in I$, $U_{(a)} \in [\delta]$.

Definition 2.29. A fuzzy bitopological space (X, δ_1, δ_2) is said to be weakly induced if both the fuzzy topological spaces (X, δ_1) and (X, δ_2) are weakly induced.

Theorem 2.30. Let (X, δ_1, δ_2) be a weakly induced fuzzy bitopological space. Then (X, δ_1, δ_2) is α -B-finitistic if and only if $(X, [\delta_1], [\delta_2])$ is B-finitistic.

Proof. Suppose (X, δ_1, δ_2) is a α -*B*-finitistic weakly induced fuzzy bitopological pace. We have to show that $(X, [\delta_1], [\delta_2])$ is *B*-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ be any $[\delta_i]$ open cover of $(X, [\delta_1], [\delta_2])$. We show that $\mathcal{V} = \{\chi_{U_{\lambda}} : U_{\lambda} \in \mathcal{U}\}$ is a $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . By defineition of $[\delta_i]$, each $\chi_{U_{\lambda}} \in \delta_i$, for each $U_{\lambda} \in [\delta_i]$. Let $x \in X$. Since $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ is a $[\delta_i]$ open cover of $(X, [\delta_1], [\delta_2])$, there exists some $U_{\lambda} \in \mathcal{U}$ such that $x \in U_{\lambda}$. But $x \in U_{\lambda} \Rightarrow \chi_{U_{\lambda}}(x) = 1 > \alpha \Rightarrow \chi_{U_{\lambda}}(x) > \alpha$. This implies that $\mathcal{V} = \{\chi_{U_{\lambda}} : U_{\lambda} \in \mathcal{U}\}$ is a $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . Since (X, δ_1, δ_2) is α -*B*-finitistic, therefore \mathcal{V} has a δ_j finite order α -open refinement say $\mathcal{V}_1 = \{W_t : t \in \Delta\}$. We show that $\mathcal{U}_1 = \{(W_t)_{(0)} : W_t \in \mathcal{V}_1\}$ is a $[\delta_j]$ finite order open refinement of \mathcal{U} . Since (X, δ_1, δ_2) is weakly induced, therefore each $(W_t)_{(0)} \in [\delta_j]$. Let $x \in X$. Suppose $x \notin (W_t)_{(0)}$, for all $(W_t)_{(0)} \in \mathcal{U}_1$. Then $W_t(x) = 0$ for all $W_t \in \mathcal{V}_1$.

But $W_t(x) = 0$ for all $W_t \in \mathcal{V}_1 \Rightarrow \{W_t : t \in \Delta\}$ is not a $\delta_j \alpha$ -open cover (X, δ_1, δ_2) . This is a contradiction. Hence $x \in (W_t)_{(0)}$ for some $(W_t)_{(0)} \in \mathcal{U}_1$. It means $\mathcal{U}_1 = \{(W_t)_{(0)} : W_t \in \mathcal{V}_1\}$ is a $[\delta_j]$ open cover of $(X, [\delta_1], [\delta_2])$. Let $(W_t)_{(0)} \in \mathcal{U}_1$. Let $x \in (W_t)_{(0)}$. Then $W_t(x) > 0$. Since \mathcal{V}_1 is a refinement of \mathcal{V} , there exists some $\chi_{U_\lambda} \in \mathcal{V}$ such that $W_t < \chi_{U_\lambda}$. But $W_t(x) > 0$ and $W_t < \chi_{U_\lambda} \Rightarrow \chi_{U_\lambda}(x) = 1 \Rightarrow x \in U_\lambda \Rightarrow (W_t)_{(0)} \subset U_\lambda$. This implies that \mathcal{U}_1 is refinement of \mathcal{U} . Now we show that order of \mathcal{U}_1 is finite. Here order of \mathcal{V}_1 is finite. Let order of $\mathcal{V}_1 = n$. Let $\{(W_1)_{(0)}, (W_2)_{(0)}, (W_3)_{(0)}, \cdots, (W_{n+2})_{(0)}\}$ be any subfamily of \mathcal{U}_1 having n+2 elements. We show that $\bigcap_{i=1}^{n+2}(W_i)_{(0)} \neq \emptyset$. Let $\bigcap_{i=1}^{n+2}(W_i)_{(0)} \neq \emptyset$. Then there exists some $x \in \bigcap_{i=1}^{n+2}(W_i)_{(0)}$. But $x \in \bigcap_{i=1}^{n+2}(W_i)_{(0)}$ $\Rightarrow x \in (W_i)_{(0)}$ for all $i = 1, 2, 3, \cdots, n+2 \Rightarrow W_i(x) > 0$ for all $i = 1, 2, 3, \cdots, n+2 \Rightarrow \bigcap_{i=1}^{n+2}(W_i)_{(x)} > 0 \Rightarrow \bigcap_{i=1}^{n+2}(W_i)_{(x)} \neq 0$. This implies that order of \mathcal{U}_1 is not exceeding n. It means order of \mathcal{U}_1 is finite. This proves that \mathcal{U}_1 is a $[\delta_j]$ finite order open refinement of \mathcal{U} . Hence $(X, [\delta_1], [\delta_2])$ is B-finitistic.

Conversely, suppose $(X, [\delta_1], [\delta_2])$ is B-finitistic. We have to show that (X, δ_1, δ_2) is α -B-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Delta\}$ be a $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . We shall show that $\mathcal{V} = \left\{ (U_{\lambda})_{(\alpha)} : U_{\lambda} \in \mathcal{U} \right\}$ is δ_i open cover of $(X, [\delta_1], [\delta_2])$. Since \mathcal{U} is $\delta_i \alpha$ open cover of (X, δ_1, δ_2) , for every $x \in X$, there exists $U_{\lambda} \in \mathcal{U}$ such that $U_{\lambda}(x) > \alpha$. Now, $U_{\lambda}(x) > \alpha \Rightarrow x \in (U_{\lambda})_{(\alpha)}$. Thus for every $x \in X$, there exists $(U_{\lambda})_{(\alpha)} \in \mathcal{V}$ such that $x \in (U_{\lambda})_{(\alpha)}$. Hence \mathcal{V} is δ_i open cover of $(X, [\delta_1], [\delta_2])$. Since $(X, [\delta_1], [\delta_2])$ is *B*-finitistic, \mathcal{V} has a δ_i finite order open refinement, say $\mathcal{V}_1 = \{V_\beta : \beta \in \Delta_1\}$. Let V'_{λ} be the union of all those members of \mathcal{V}_1 which are subsets of $(U_\lambda)_{(\alpha)}$. Then clearly, $\mathcal{V}'_1 = \{ V'_{\lambda} : \lambda \in \Delta_1 \}$ is a δ_j open refinement of \mathcal{V} and order of \mathcal{V}'_1 is finite. Let $\mathcal{U}_{1} = \left\{ \chi_{V_{\lambda}^{\prime}} : V_{\lambda}^{\prime} \in \mathcal{V}_{1}^{\prime} \right\}.$ We show that \mathcal{U}_{1} is $\delta_{j}\alpha$ -open cover of $(X, \delta_{1}, \delta_{2})$. For this, let $x \in X$. Since \mathcal{V}'_i is a δ_i open cover of $(X, [\delta_1], [\delta_2])$, there exists $V'_{\lambda} \in \mathcal{V}'_i$ such that $x \in V'_{\lambda}$. But $x \in V'_{\lambda} \Rightarrow x \in (U_{\lambda})_{(\alpha)} \Rightarrow U_{\lambda}(x) > \alpha$. Also, $x \in V'_{\lambda} \Rightarrow \chi_{V'_{\lambda}} = 1$. Therefore, $(\chi_{V'_{\lambda}})(x) = \chi_{V'_{\lambda}}(x) \wedge U_{\lambda}(x) > 1 \wedge \alpha = \alpha$. This shows that \mathcal{U}_{1} is $\delta_{j}\alpha$ -open cover of (X, δ_1, δ_2) . Clearly, \mathcal{U}_1 is α -open refinement of \mathcal{U} . Since \mathcal{V}_1' is of finite order, we can assume that order of $\mathcal{V}_1 = n$ (say). Then it is easy to show that order of \mathcal{U}_1 is not exceeding *n*. Hence (X, δ_1, δ_2) is α -*B*-finitistic.

Theorem 2.31. Let (X, τ_1, τ_2) be a general bitopological space. Then (X, τ_1, τ_2) is *B*-finitistic if and only if $(X, \omega(\tau_1), \omega(\tau_2))$ is α -*B*-finitistic, where ω is the Lowen functor.

Proof. We know that $(X, \omega(\tau_1), \omega(\tau_2))$ is weakly induced fuzzy bitopological space and $[\omega(\tau_i)] = \tau_i$, for i = 1, 2. By above Theorem 2.30, (X, τ_1, τ_2) is *B*-finitistic if and only if $(X, \omega(\tau_1), \omega(\tau_2))$ is *B*-finitistic.

Theorem 2.32. A fuzzy bitopological space (X, δ_1, δ_2) is α -B-finitistic if and only if $(X, \iota_{\alpha}(\delta_1), \iota_{\alpha}(\delta_2))$ is B-finitistic.

Proof. We know that $\iota_{\alpha}(\delta_i) = \{U_{(\alpha)} : U \in \delta_i\}$, for i = 1, 2.

Suppose (X, δ_1, δ_2) is α -*B*-finitistic. We shall show that $(X, \iota_\alpha(\delta_1), \iota_\alpha(\delta_2))$ is *B*-finitistic. For this, let $\mathcal{U} = \{U_\lambda : \lambda \in \Delta\}$ be any δ_i open cover of $(X, \iota_\alpha(\delta_1), \iota_\alpha(\delta_2))$. Then for each $U_\lambda \in \mathcal{U}$, there exists $V_\lambda \in \delta_i$ such that $U_\lambda = (V_\lambda)_{(\alpha)}$. We shall show that $\mathcal{V} = \{V_\lambda : U_\lambda = (V_\lambda)_\alpha \in \mathcal{U}\}$ is a $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . For this, let $x \in X$. Since \mathcal{U} is δ_i open cover of $(X, \iota_\alpha(\delta_1), \iota_\alpha(\delta_2))$, there exists $U_\lambda \in \mathcal{U}$ such that $x \in U_\lambda$. Now, $x \in U_\lambda \Rightarrow x \in (V_\lambda)_{(\alpha)} \Rightarrow V_\lambda(x) > \alpha$. Thus for $x \in X$, there exists $V_\lambda \in \mathcal{V}$ such that $V_\lambda(x) > \alpha$. Hence \mathcal{V} is $\delta_i \alpha$ -open cover of X. Since (X, δ_1, δ_2) is α -*B*-finitistic, \mathcal{V} has δ_j finite order α -open refinement, say $\mathcal{V}_1 = \{W_\beta : \beta \in \Delta_1\}$. Then clearly, $\mathcal{U}_1 = \{(W_\beta)_{(\alpha)} : W_\beta \in \mathcal{V}_1\}$ is δ_j finite order open refinement of \mathcal{U} . Hence $(X, \iota_\alpha(\delta_1), \iota_\alpha(\delta_2))$ is *B*-finitistic.

Conversely, suppose $(X, \iota_{\alpha}(\delta_1), \iota_{\alpha}(\delta_2))$ is *B*-finitistic. We have to show that (X, δ_1, δ_2) is α -*B*-finitistic. Let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Delta\}$ be any $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . It is easy to show that $\mathcal{V} = \{(U_{\lambda})_{(\alpha)} : U_{\lambda} \in \mathcal{U}\}$ is a δ_i open cover of $(X, \iota_{\alpha}(\delta_1), \iota_{\alpha}(\delta_2))$. Since $(X, \iota_{\alpha}(\delta_1), \iota_{\alpha}(\delta_2))$ is *B*-finitistic, \mathcal{V} has a δ_j finite order open refinement, say $\mathcal{V}_1 = \{(W_{\beta})_{(\alpha)} : \beta \in \Delta_1\}$. Then clearly, $\mathcal{U}_1 = \{W_{\beta} : (W_{\beta})_{(\alpha)} \in \mathcal{V}_1\}$ is a δ_j finite order α -open refinement of \mathcal{U} . Hence (X, δ_1, δ_2) is α -*B*-finitistic.

Theorem 2.33. Let (X, δ_1, μ_1) and (Y, δ_2, μ_2) be two α -B-finitistic bitopological spaces. Then $(X \cup Y, \delta_1 \oplus \delta_2, \mu_1 \oplus \mu_2)$ is α -B-finitistic.

Proof. Suppose (X, δ_1, μ_1) and (Y, δ_2, μ_2) are two α -*B*-finitistic bitopological spaces. We have tow show that $(X \cup Y, \delta_1 \oplus \delta_2, \mu_1 \oplus \mu_2)$ is α -*B*-finitistic. For this, let $\mathcal{U} = \{U_{\lambda} : \lambda \in \Delta\}$ be a $\delta_1 \oplus \delta_2$ α -open cover of $(X \cup Y, \delta_1 \oplus \delta_2, \mu_1 \oplus \mu_2)$. Then clearly, $\mathcal{U}|_X = \{U_{\lambda}|_X : U_{\lambda} \in \mathcal{U}\}$ and $\mathcal{U}|_Y = \{U_{\lambda}|_Y : U_{\lambda} \in \mathcal{U}\}$ are δ_1 and δ_2 α -open covers of (X, δ_1, μ_1) and (Y, δ_2, μ_2) , respectively. Since both (X, δ_1, μ_1) and (Y, δ_2, μ_2) are α -*B*-finitistic, therefore, $\mathcal{U}|_X$ and $\mathcal{U}|_Y$ have μ_1 and μ_2 finite order α -open refinements, say \mathcal{V}_X and \mathcal{V}_Y , respectively. Define $R_b = V_b$ on $X \& R_{b'} = \underline{0}$ on Y and $S_t = W_t$ on $Y \& S_{t'} = \underline{0}$ on X, where $V_b \in \mathcal{V}_X$ and $W_t \in \mathcal{V}_Y$.

Then clearly, the family of all R_b 's and S_t 's defined above is a $\mu_1 \oplus \mu_2$ finite order α -open refinement of \mathcal{U} . Hence $(X \cup Y, \delta_1 \oplus \delta_2, \mu_1 \oplus \mu_2)$ is α -B-finitistic.

Theorem 2.34. Let $\{(X_t, \delta_t, \mu_t) : t \in T\}$ be a family of fuzzy bitopological spaces such that $(X, \bigoplus_{t\in T} \delta_t, \bigoplus_{t\in T} \mu_t)$ is α -B-finitistic, where $X = \bigcup_{t\in T} X_t$. Then (X_t, δ_t, μ_t) is α -B-finitistic, $\forall t \in T$.

Proof. Here, $X = \bigcup_{t \in T} X_t$, where X_t 's are disjoint. Suppose $(X, \bigoplus_{t \in T} \delta_t, \bigoplus_{t \in T} \mu_t)$ is α -*B*-finitistic. Let $\mathcal{U}_t = \{U_{\lambda} : \lambda \in \Delta\}$ be any $\bigoplus_{t \in T} \delta_t \alpha$ -open cover of (X_t, δ_t) .

For all, $U_{\lambda} \in \mathcal{U}_{t}$, we define $R_{\lambda} = U_{\lambda}$ on X_{t} and $R_{\lambda} = \underline{1}$ on $X - X_{t}$. Then clearly \mathcal{U} , the family of all R_{λ} 's is $\delta_{t}\alpha$ -open cover of $(X, \bigoplus_{t \in T} \delta_{t}, \bigoplus_{t \in T} \mu_{t})$. Since $(X, \bigoplus_{t \in T} \delta_{t}, \bigoplus_{t \in T} \mu_{t})$ is α -B-finitistic, therefore, \mathcal{U} has a $\bigoplus_{t \in T} \mu_{t}$ finite order α -open refinement, say $\mathcal{V} = \{V_{\beta} : \beta \in \Delta_{1}\}$. Then clearly, $\mathcal{V}_{t} = \{V_{\beta} \mid_{X_{t}} : V_{\beta} \in \mathcal{V}\}$ is μ_{t} finite order α -open refinement of \mathcal{U}_{t} . Hence $(X_{t}, \delta_{t}, \mu_{t})$ is α -B-finitistic, $\forall t \in T$.

Theorem 2.35. The sum space $(X \cup Y, \delta_1 \oplus \delta_2, \mu_1 \oplus \mu_2)$ is α -B-finitistic if and only if (X, δ_1, μ_1) and (Y, δ_2, μ_2) are α -B-finitistic.

Proof. It follows from Theorem 2.33 and 2.34.

Theorem 2.36. A fuzzy bitopological space (X, δ_1, δ_2) is α -B-finitistic if and only if each δ_i basic α -open cover of (X, δ_1, δ_2) has a δ_i finite order α -open refinement.

Proof. First suppose that each δ_i basic α -open cover of (X, δ_1, δ_2) has a δ_j finite order α -open refinement. We shall show that (X, δ_1, δ_2) is α -*B*-finitistic. For this, let \mathcal{U} be any $\delta_i \alpha$ -open cover of (X, δ_1, δ_2) . For each $U_{\lambda} \in \mathcal{U}$, let \mathcal{A}_i be the family of all the basic α -open subsets of (X, δ_1, δ_2) whose join is U_{λ} . Let \mathcal{V} be the union of all these families \mathcal{A}_{λ} 's. then clearly, \mathcal{V} is a basic α -open cover of (X, δ_1, δ_2) . By the

given condition, \mathcal{V} has a δ_i finite order α -open refinement, say \mathcal{V}_1 . Then clearly, \mathcal{V}_1

is a δ_i finite order α -open refinement of \mathcal{U} . Hence (X, δ_1, δ_2) is α -B-finitistic.

Converse is trivial.

References

- [1] Shakeel Ahmed, On α -finitistic spaces, *Tamsui Oxford Journal of Mathemat-ical Sciences*, No.1, 22 (2006), 73-82.
- [2] Shakeel Ahmed, Finitisticness of bitopological spaces, J.Ultra Scientist, No.1, 19 (2007), 225-229.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [4] S. Deo, Topology of finitistic spaces and related topics, Bull. Allahbad Math. Soc., 2 (1988), 256-268.
- [5] D. S. Jamwal and Shakeel Ahmed, On covering dimension and finitistic spaces in L-topology, J.Fuzzy Mathematics, No.2, 14 (2006), 207-222.
- [6] J. C. Kelly, Bitopological spaces Proc. London Math. Soc., 13 (1963), 71-89.
- [7] Y. M. Liu and M. K. Luo, Fuzzy topology, World Scientific Pub., (1997).
- [8] A. R. Pears, Dimension theory of general spaces, Cambridge University Press, (1975).
- [9] R. Srivastava and M. Srivastava, On compactness in bifuzzy topological spaces, *Fuzzy Sets and Systems*, 121 (2001), 285-292.
- [10] L. A. Zedah, Fuzzy sets, Inform and Control, 8 (1965), 338-353.