

## A VALUE DISTRIBUTION RESULT RELATED TO HAYMAN'S ALTERNATIVE

## KULDEEP SINGH CHARAK AND ANIL SINGH

Abstract. Motivated by Bloch's Principle, we prove a value distribution result for meromorphic functions which is related to Hayman's alternative in certain sense.

## 1. Introduction and Main Result

The reader is assumed to be familiar with the standard notations of Nevanlinna value distribution theory of meromorphic functions (one may refer to [4, 6]) such as T(r, f), m(r, f), N(r, f), etc. We shall denote the class of all meromorphic functions on a domain D in  $\mathbb{C}$  by  $\mathcal{M}(D)$  and we shall write,  $f(f, D) \in \mathcal{P}^{r}$  for f(f, D) satisfies the property  $f(f, D) \in \mathcal{P}^{r}$  for  $f(f, D) \in \mathcal{P}^{r}$ 

We say that  $\phi \in \mathcal{M}(\mathbb{C})$  is a small function of  $f \in \mathcal{M}(\mathbb{C})$  if  $T(r, \phi) = S(r, f)$  as  $r \to \infty$ possibly outside a set of r of finite linear measure.

W.K. Hayman proved the following 'Picard type' theorem, also known as Hayman's
alternative:

Theorem 1.1. [7] Let  $f \in \mathcal{M}(\mathbb{C})$  and let  $l \ge 1$ . Suppose that  $f(z) \ne 0$ , and  $f^{(l)}(z) - 1 \ne 0$ for all  $z \in \mathbb{C}$ . Then f is constant.

A subfamily  $\mathcal{F}$  of  $\mathcal{M}(D)$  is said to be normal in D if every sequence of members of  $\mathcal{F}$  contains a subsequence that converges locally uniformly (w.r.t. the spherical metric) in D. Recall Bloch's Principle (see[10, 11]): A subfamily  $\mathcal{F}$  of  $\mathcal{M}(D)$  with  $(f, D) \in \mathcal{P}$  for each  $f \in \mathcal{F}$  is likely to be normal on D if  $\mathcal{P}$  reduces every  $f \in \mathcal{M}(\mathbb{C})$  to a constant. Neither Bloch's Principle nor its converse is true (see [1, 2, 3, 8, 10]).

According to Bloch's Principle, to every 'Picard type' theorem there corresponds a normality criterion. A normality criterion corresponding to Theorem 1.1 was proved by Y.Gu as follows:

Theorem 1.2. [5] Let  $\mathcal{F} \subseteq \mathcal{M}(D)$  and let  $l \ge 1$ . Suppose that  $f(z) \ne 0$ , and  $f^{(l)}(z) - 1 \ne 0$  for all  $z \in D$  and  $f \in \mathcal{F}$ . Then  $\mathcal{F}$  is normal in D.

The constants 0 and 1 in Theorem 1.1 and Theorem 1.2 can be replaced by arbitrary constants a and  $b \neq 0$ :

Theorem 1.3. [7] Let  $f \in \mathcal{M}(D)$  and let  $l \ge 1$ . Suppose that  $f(z) \ne a$ , and  $f^{(l)}(z)-b\ne 0$ for all  $z \in \mathbb{C}$ , where  $a, b \in \mathbb{C}$ ,  $b\ne 0$ . Then f is constant.